วันเสาร์ที่ 26 สิงหาคม พ.ศ. 2560
บทที่3 สมบัติของธาตุและสารประกอบ

การเกิดและสมบัติของสารประกอบคลอไรด์ ออกไซด์ของธาตุในคาบที่ 2 และคาบที่ 3 สรุปได้ดังนี้
1. เนื่องจากในคาบเดียวกันประกอบด้วยโลหะ( ทางซ้าย ) กึ่งโลหะ และอโลหะ( ทางขวา ) แต่ละธาตุมีเวเลนซ์อิเล็กตรอนไม่เท่ากัน ดังนั้นการเกิดสารประกอบของธาตุในคาบเดียวกันจึงต่างกันและสารประกอบที่ได้ส่วนใหญ่มีสมบัติต่างกัน
2. อโลหะซึ่งอยู่ทางขวาทำปฏิกิริยากับธาตุชนิดหนึ่งเกิดสารประกอบได้หลายชนิด จึงทำให้มีเลขออกซิเดชันได้หลายค่า ส่วนธาตุโลหะซึ่งอยู่ทางซ้าย เมื่อทำปฏิกิริยากับอโลหะชนิดหนึ่งมักเกิดสารประกอบได้ชนิดเดียว จึงทำให้มีเลขออกซิเดชันได้เพียงค่าเดียว
3. สารประกอบคลอไรด์ และออกไซด์ ของโลหะเป็นสารประกอบไอออนิก ยกเว้น BeCl2 เป็นสารประกอบโคเวเลนต์ จึงมีจุดหลอมเหลวและจุดเดือดสูง เพราะการหลอมเหลวและการเดือดต้องสลายพันธะไอออนิก ซึ่งเป็นพันธะที่แข็งแรง ส่วนสารประกอบคลอไรด์และออกไซด์ของอโลหะ เป็นสารประกอบโคเวเลนต์ จึงมีจุดหลอมเหลวและจุดเดือดต่ำ เพราะการหลอมเหลวและการเดือดทำลายเพียงแรงยึดเหนี่ยวระหว่างโมเลกุล ซึ่งอาจเป็นแรงแวนเดอร์วาลส์ชนิดแรงลอนดอน ( โมเลกุลไม่มีขั้ว ) หรือแรงแวนเดอร์วาลส์ชนิดแรงดึงดูดระหว่างขั้วบวกกับขั้วลบของโมเลกุล ( โมเลกุลมีขั้ว ) เนื่องจากแรงแวนเดอร์วาลส์เป็นแรงที่อ่อนจึงทำให้สารประกอบของอโลหะมีจุดหลอมเหลว จุดเดือดต่ำ ยกเว้นโมเลกุลที่มีมวลโมเลกุลมาก เช่น P2O5 , P2S5 , PCl5 มีจุดหลอมเหลวค่อนข้างสูง สำหรับสารประกอบของธาตุกึ่งโลหะ คือ B และ Si บางชนิดมีจุดหลอมเหลวจุดเดือดค่อนข้างสูง ได้แก่ B2O3 , B2S3 บางชนิดมีจุดหลอมเหลวจุดเดือดสูงมาก ได้แก่ SiO2 เพราะเป็นสารโครงผลึกร่างตาข่าย แต่บางชนิดมีจุดหลอมเหลวต่ำ ได้แก่ BCl3 , SiCl4
4. สารประกอบของธาตุที่เป็นโลหะที่ภาวะปกติมีสถานะเป็นของแข็ง ไม่นำไฟฟ้า แต่เมื่อหลอมเหลวนำไฟฟ้าได้ เพราะเป็นสารประกอบไอออนิก ส่วนสารประกอบของธาตุที่เป็นอโลหะส่วนใหญ่มีสถานะเป็นก๊าซหรือของเหลว เพราะเป็นสารประกอบโคเวเลนต์
5. สารละลายของสารประกอบออกไซด์ของโลหะ ส่วนใหญ่มีสมบัติเป็นเบส ( เบสิกออกไซด์ ) ส่วนสารประกอบออกไซด์ของอโลหะมีสมบัติเป็นกรด
6. สารประกอบของธาตุในคาบที่ 2 และคาบที่ 3 บางชนิดไม่ละลายน้ำ ได้แก่ BeO , Al2O3 , SiO2 , BeS , CS2 , P2S5 , NCl3 และ CCl4
7. SiO2 ไม่ละลายน้ำ แต่มีสมบัติเป็นกรด เพราะ SiO2 สามารถละลายในสารละลายเบสได้
( ทำปฏิกิริยากับเบสได้ ) เช่น สารละลาย NaOH

* สารที่ทำปฏิกิริยากับสารละลายเบสได้คือกรด และสารที่ทำปฏิกิริยากับสารละลายกรดได้คือเบส
8. BeO และ Al2O3 ไม่ละลายน้ำแต่มีสมบัติเป็นได้ทั้งกรดและเบส เพราะ BeO และ Al2O3 ละลายได้ทั้งสารสารละลายกรด เช่น สารละลายกรดไฮโดรคลอริก ( HCl ) และสารละลายเบส เช่น สารละลายโซเดียมไฮดรอกไซด์ ( NaOH ) ( ทำปฏิกิริยากับสารละลายกรดและสารละลายเบสได้ ) อ่านเพิ่มเติม
บทที่2 พันธะเคมี
พันธะเคมี (Chemical Bond) หมายถึง แรงยึดเหนี่ยวระหว่างอะตอม 2 อะตอม หรือไอออนเข้าไว้ด้วยกันเป็นโมเลกุลหรือเป็นกลุ่มของอะตอม ทั้งนี้ แรงยึดเหนี่ยวจะขึ้นอยู่กับอิเล็กตรอนวงนอกของอะตอม (Valence Electron) เท่านั้น มีการถ่ายโอนหรือการใช้อิเล็กตรอนร่วมกันทำให้เกิดพันธะเคมีที่มีการจัดเรียงอิเล็กตรอนให้เกิดอิเล็กตรอนคู่ร่วมพันธะขึ้นมา ทำให้โมเลกุลที่เกิดขึ้นมีความเสถียรขึ้น
โดยทั่วไปอะตอมของธาตุเมื่ออยู่ลำพังจะพยายามจัดตัวเอง อาจมีการรวมกับอะตอมของ ธาตุชนิดเดียวกัน หรือรวมกับอะตอมของธาตุต่างชนิดกัน เพื่อให้มีอิเล็กตรอนวงนอกสุดให้เหมือน กับแก๊สเฉื่อย ซึ่งมีการจัดเรียงตัวของอิเล็กตรอนในลักษณะที่มีความเสถียร กล่าวคือ จำนวนวาเลนซ์อิเล็กตรอนของอะตอมเท่ากับ 8 (ยกเว้น He ที่มีจำนวนวาเลนซ์อิเล็กตรอนเท่ากับ2ที่มีความเสถียรแล้ว) ซึ่งอะตอมอาจทำได้ดังนี้
1. ให้อิเล็กตรอนแก่อะตอมอื่น
2. รับอิเล็กตรอนจากอะตอมอื่น
3. ใช้อิเล็กตรอนร่วมกับอะตอมอื่น
2. รับอิเล็กตรอนจากอะตอมอื่น
3. ใช้อิเล็กตรอนร่วมกับอะตอมอื่น
พันธะไอออนิก (ionic bonds)
พันธะไอออนิก คือ พันธะที่เกิดขึ้นอันเนื่องมาจากแรงดึงดูดทางไฟฟ้าสถิตระหว่างไอออนบวก(cation) และไอออนลบ(anion) อันเนื่องมาจากการถ่ายโอนอิเล็กตรอน จากโลหะให้แก่อโลหะ โดยทั่วไปแล้วพันธะไอออนิกเป็นพันธะที่เกิดขึ้นระหว่างโลหะและอโลหะ ทั้งนี้เนื่องจากว่าโลหะมีค่าพลังงานไอออไนเซชัน(ionization energy)ต่ำ แต่อโลหะมีค่าสัมพรรคภาพอิเล็กตรอน(electron affinity)สูง ดังนั้นโลหะจึงมีแนวโน้มที่จะให้อิเล็กตรอน และอโลหะมีแนวโน้มที่จะรับอิเล็กตรอน
เมื่อโลหะเสียอิเล็กตรอนก็จะกลายเป็นไอออนบวก

อโลหะเมื่อรับอิเล็กตรอนก็จะกลายเป็นไอออนลบ

วันศุกร์ที่ 14 กรกฎาคม พ.ศ. 2560
บทที่ 1 อะตอมและตารางธาตุ
บทที่ 1
อะตอมและตารางธาตุ
อะตอม คือ หน่วยที่เล็กที่สุดของสสารที่ยังคงสภาพความเป็นสสารอยู่ได้
แบบจำลองอะตอม ตามทฤษฎี 5 แบบ คือ
1. แบบจำลองอะตอมของจอห์นดอลตัน
สสารทุกชนิดประกอบด้วยอนุภาคที่เล็กที่สุดเรียกว่า อะตอม ซึ่งไม่สามารถแบ่งแยกต่อไปได้อีก
2. แบบจำลองอะตอมของทอมสัน
-ค้นพบอิเล็กตรอน ที่ มีประจุไฟฟ้าลบ มีมวลประมาณ1/2000 ของมวลของ H
การกระเจิง (scattering) ของอนุภาค a โดยแผ่นทองคำบางๆ รัทเทอร์ฟอร์ดพบว่ารังสีส่วนใหญ่ไม่เบี่ยงเบน และส่วนน้อยที่เบี่ยงเบนนั้น ทำมุมเบี่ยงเบนใหญ่มาก บางส่วนยังเบี่ยงเบนกลับทิศทางเดิมด้วย จำนวนรังสีที่เบี่ยงเบนจะมากขึ้นถ้าความหนาแน่นของแผ่นโลหะเพิ่มขึ้น
การเขียนสัญลักษณ์นิวเคลียร์
AZX : เลขมวล คือผลบวกของโปรตอน และนิวตรอนในนิวเคลียส
เลขอะตอม คือ จำนวนโปรตอนในนิวเคลียส ซึ่ง =จำนวนอิเล็กตรอนในอะตอม
ดังนั้น อะตอมของธาตุLithium ( Li )
มีจำนวนโปรตอน = 3 ตัว
อิเล็กตรอน = 3 ตัว
และนิวตรอน = 4 ตัว
คำศัพท์ที่ควรทราบ
1. ไอโซโทป (Isotope)
หมายถึง อะตอมของธาตุชนิดเดียวกัน มีเลขอะตอมเท่ากัน แต่มีเลขมวลต่างกัน
2. ไอโซบาร์ ( Isobar)
หมายถึง อะตอมของธาตุต่างชนิดกันที่มีเลขมวลเท่ากัน แต่มีเลขอะตอมไม่เท่ากัน
3. ไอโซโทน (Isotone)
หมายถึง อะตอมของธาตุต่างชนิดกันแต่มีจำนวนนิวตรอนเท่ากัน
4. แบบจำลองอะตอมของนีลส์โบร์
นักวิทยาศาสตร์จึงมีการศึกษาข้อมูลใหม่มาสร้างแบบจำลองที่เน้นรายละเอียดเกี่ยวกับการจัดเรียงอิเล็กตรอนที่อยู่รอบนิวเคลียส โดยศึกษาจากสเปกตรัมและค่าพลังงานไอออไนเซชัน
สเปกตรัม
สเปกตรัมเป็นแสงที่ถูกแยกกระจายออกเป็นแถบสีต่าง ๆ และแสงเป็นรูปหนึ่งของคลื่นแม่เหล็กไฟฟ้า
สเปกตรัมของธาตุ
แมกซ์ พลังค์ได้เสนอทฤษฎีควอนตัม (quantum theory) และอธิบายเกี่ยวกับการเปล่งรังสีว่า รังสีแม่เหล็กไฟฟ้าที่เปล่งออกมามีลักษณะเป็นกลุ่มๆ ซึ่งประกอบด้วยหน่วยเล็กๆ เรียกว่า ควอนตัม (quantum) ขนาดของควอนตัมขึ้นกับความถี่ของรังสี และแต่ละควอนตัมมีพลังงาน (E) โดยที่ E เป็นปฏิภาคโดยตรงกับความถี่ (u)ดังนี้
E=hν
E = พลังงาน 1 ควอนตัมแสง (J)
h = ค่าคงที่ของพลังค์ (6.62x10-34 Js)
ν= ค่าความถี่ ( s-1)
วีดิโอ
สมัครสมาชิก:
บทความ (Atom)